

0960-894X(95)00170-0

MOLECULAR DESIGN OF NOVEL PGI₂ AGONISTS WITHOUT PG SKELETON. IV

Nobuyuki Hamanaka,* Kanji Takahashi, Yuuki Nagao, Kazuhiko Torisu, Hidekado Tokumoto, and Kigen Kondo

> Minase Research Institute, Ono Pharmaceutical Co., Ltd. Shimamoto, Mishima, Osaka 618, Japan

Abstract. The synthesis and biological evaluation of a novel series of di or tetrahydronaphthalene-5-oxyacetic acid derivatives with the 4-benzhydryl pyrazole group is described. Among these compounds, 7 has been identified as a highly potent PGI₂ agonist with an exceptionally long *in vivo* duration of action.

In the previous papers¹ we described the design, synthesis and pharmacology of tetrahydronaphthalene-5-oxyacetic acid derivatives with the benzhydryloxyimine group (1-4), as the PGI₂ agonists to the human platelet receptor. Compound 2 was found to be an especially potent and orally active PGI₂ agonist.

Despite the favorable biological profile of 2, we have a problem in this series due to the *anti* (more active) and *syn* (less active) interconversion of the oxime moiety. However, it provided a novel tetrahydronaphthalene-5-oxyacetic acid substructure with a potential for potency, oral activity and duration of action which we anticipated could be employed in conjunction with the *anti* form of the oxime surrogate. We

report here in preliminary form the synthesis of novel and very potent PGI₂ agonists 5-8, in which the benzhydryl oxime moiety in 1-4 has been replaced by the 4-benzhydryl pyrazole group.

Chemistry

The key intermediate 11 for synthesis of compounds 5-8 was prepared as shown in Scheme 1. Oxidation of commercially available 3,3-diphenyl-1-propanol (9) gave aldehyde which was converted to acetal 10. Formylation of 10 by the method of Vilsmeier-Haack-Arnold acylation², followed by reaction with hydrazine monohydrochloride and potassium carbonate afforded 4-benzhydryl pyrazole (11).

Scheme 1

(1) Swern Ox.; (2) MeOH, TsOH; (3) POCl3, DMF; (4) N2H4·HCl, K2CO3.

Scheme 2

(1) 11, *t*-BuOK, DMF; (2) NaOH, MeOH; (3) NaHSO3; (4) NaCN; (5) MsCl, Et3N; (6) DBU, PhCH3; (7) BBr3; (8) *t*-BuMe₂SiCl, imidazole; (9) DIBAL; (10) *n*-Bu₄NF; (11) NaBH₄, MeOH, cat.AcOH; (12) BrCH₂COOMe, K₂CO₃, MeCN; (13) CCl₄, Ph₃P; (14) Me₃CCOCl, pyridine; (15) Zn, BrCH₂COOEt, C₆H₆; (16) HCOOH; (17) EtOH, EtONa; (18) LiBH₄, MeOH, THF; (19) MsCl, Et₃N.

Scheme 2 illustrates the preparation of compounds 5-8. Treatment of ester bromides 12 and 13 with the potassium salt of 11 gave the pyrazole esters which were hydrolyzed to afford 5 and 6.

Compound 16 was obtained from 14 by following series of reactions; (i) treatment with sodium bisulfite to give bisulfite addition product; (ii) cyanation; (iii) mesylation; (iv) dehydration to afford α,β unsaturated nitrile; (v) demethylation to give 15; (vi) protection of phenol with t-butyldimethylsilyl chloride; (vii) reduction with DIBAL to afford aldehyde; (viii) deprotection of silyl ether; (ix) reduction of aldehyde; (x) O-alkylation; and (xi) chlorination with carbon tetrachloride and triphenylphosphine.

Conversion of 17 into 18 was achieved by (i) pivalylation of the phenol; (ii) Reformatsky reaction with ethyl bromoacetate; (iii) dehydration to afford the α,β and β,γ unsaturated esters (the ratio was 1:9); (iv) ethanolysis of pivaloyl ester to afford 18 which was purified by recrystallization. Reduction of 18 with lithium borohydride gave diol compound. The mesylate 19 was prepared by selective O-alkylation of phenol followed by mesylation. Alkylation of 16 and 19 with 11 furnished pyrazole derivatives which were hydrolyzed to afford 7^3 and 8.

Table 1	The Effect of Pyrazole Derivatives on the Binding and Functional Assays

No.		Binding Assay IC ₅₀ (μM)	Functional Assay IC ₅₀ (μM)
5	COOH Ph	0.040	0.13
6	COOH Ph	0.018	0.093
7	COOH Ph	0.008	0.026
8	NN Ph	2.0	8.6

Biological Results and Discussion

Evaluation of PGI₂ binding was undertaken using conventional ligand binding assay based on the displacement of [³H]-iloprost from human platelets. All compounds were tested for their ability to inhibit 4 µM

ADP-induced platelet aggregation of human platelet rich plasma (PRP) and the results are reported as IC50 values.

As shown in Table 1, 5 and 6, which were designed based on compound 1 and 3, showed high affinities for human platelet PGI₂ receptors and potent PGI₂ agonistic activities. Surprisingly, even the dihydronaphthalene derivative 7, lucking chirality, exhibited potent PGI₂ agonistic property. Replacement of the pyrazole group by other five membered heterocyclic functions resulted in decrease in PGI₂ agonistic potencies.⁴ In particular, 7 was found to be an potent PGI₂ agonist in human platelets and was further evaluated for its *in vitro* duration of action.

Compound 7 showed ADP-induced antiaggregation of guinea pig, rat and dog platelets less effective than human platelets with IC50's of 1.0, 27, and 1.1 µM, respectively. Oral administration of 7 (1 and 3 mg/kg) inhibited ADP- or collagen-induced platelet aggregation and this inhibition lasted more than four hours in dog.

These results suggested that 7 inhibits platelet aggregation in vitro and in vivo by acting as an agonist for the PGI₂ receptors although its structure is completely different from that of PGI₂.

References and Notes

- 1. For Part II, see: Hamanaka, N.; Takahashi, K.; Nagao, Y.; Torisu, K.; Takada, H.; Tokumoto, H.; Kondo, K. *Bioorg. Med. Chem. Lett.*, preceding paper in this issue.
- 2. Jutz, C. Advances in Organic Chemistry: Method and Results: Taylor, E. C. Ed.; 1976, vol. 1, Part 1, pp. 225-342.
- 3. Characterization of 7: white powder, 155-156° (ethyl acetate-hexane); IR (KBr): 2913, 1735, 1575, 1467, 1219 cm⁻¹; 200 MHz ¹H-NMR (CDCl₃) δ 8.00 (1 H, brs), 7.37-7.12 (11 H, m), 7.06 (1 H, s), 7.04 (1 H, t, J = 8 Hz), 6.66 (1 H, d, J = 8 Hz), 6.62 (1 H, d, J = 8 Hz), 6.18 (1 H, s), 5.35 (1 H, s), 4.78 (2 H, s), 4.58 (2 H, s), 2.84 (2 H, t, J = 8 Hz), 2.13 (2 H, d, J = 8 Hz); 125 MHz ¹³C-NMR (CDCl₃) δ 171.87, 154.31, 143.91, 138.98, 136.20, 134.86, 129.32, 128.57, 128.42, 126.78, 126.44, 125.21, 125.01, 123.15, 120.35, 111.25, 65.61, 57.19, 47.57, 24.06, 20.11; MS (EI) m/z 450 (M⁺).
- 4. The PGI2 agonistic potencies of other five membered heterocyclic derivatives are shown below.

	A	Functional Assay IC ₅₀ (μM)	A	unctional Assay IC ₅₀ (μM)		nctional Assay IC ₅₀ (μM)
(A) Ph	ZNX	1.0	1 Y	1.0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.67
COOH	Z,	5.1	V _N →	12		0.53

(Received in Japan 8 March 1995; accepted 10 April 1995)